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Abstract: Circulating tumor cells (CTCs) detected by CellSearch are prognostic in non-small-cell
lung cancer (NSCLC), but rarely found. CTCs can be extracted from the blood together with
mononuclear cell populations by diagnostic leukapheresis (DLA), therefore concentrating them.
However, CellSearch can only process limited DLA volumes (≈2 mL). Therefore, we established
a protocol to enumerate CTCs in DLA products with Isolation by SizE of Tumor cells (ISET), and
compared CTC counts between CellSearch® and ISET. DLA was performed in NSCLC patients who
started a new therapy. With an adapted protocol, ISET could process 10 mL of DLA. CellSearch
detected CTCs in a volume equaling 2 × 108 leukocytes (mean 2 mL). CTC counts per mL were
compared. Furthermore, the live cell protocol of ISET was tested in eight patients. ISET successfully
processed all DLA products—16 with the fixed cell protocol and 8 with the live cell protocol. In total,
10–20 mL of DLA was processed. ISET detected CTCs in 88% (14/16), compared to 69% (11/16, p < 0.05)
with CellSearch. ISET also detected higher number of CTCs (ISET median CTC/mL = 4, interquartile
range [IQR] = 2–6, CellSearch median CTC/mL = 0.9, IQR = 0–1.8, p < 0.01). Cells positive for
the epithelial cell adhesion molecule (EpCAM+) per mL were detected in similar counts by both
methods. Eight patients were processed with the live cell protocol. All had EpCAM+, CD45−,
CD235- cells isolated by fluorescence-activated cell sorting (FACS). Overall, ISET processed larger
volumes and detected higher CTC counts compared to CellSearch. EpCAM+ CTCs were detected in
comparable rates.
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1. Introduction

Circulating tumor cells (CTCs) isolated from the peripheral blood of non-small-cell lung cancer
(NSCLC) patients are associated with worse prognosis and worse tumor response to therapy [1–4].
When detected in sufficient numbers, they can be used for molecular analysis. Unfortunately, CTCs
are only detected in 30% of NSCLC patients and usually in low numbers, hampering their clinical
application [5,6]. It is likely that the majority of metastatic patients have CTCs in circulation, but that
the volume of blood screened for CTCs (7.5 mL) is insufficient for a reliable detection [7]. For NSCLC,
it was calculated that 10 CTCs could be detected in 78% of patients if 0.75 L of blood is screened [8].

Due to their similar densities, CTCs and mononuclear cells (lymphocytes and monocytes) can be
extracted from the blood by diagnostic leukapheresis (DLA). In this way, larger blood volumes can
be screened for the presence of CTCs, e.g., 5 L instead of 10 mL, with little burden for the patient [8].
In breast and prostate cancer, significantly higher CTC counts are detected in DLA products compared
to peripheral blood by CellSearch [9–11]. CellSearch uses the expression of the epithelial cell adhesion
molecule (EpCAM) to identify CTCs and is currently the only FDA-approved method. A drawback of
CellSearch is that the number of white blood cells that can be processed is limited to 2 × 108 leukocytes.
Consequently, the volume of DLA product that can be screened for CTCs is restricted to a few milliliters
of DLA product [9–11].

We envisaged that a marker-independent CTC detection method could process larger volumes
of DLA. Isolation by SizE of Tumor cells (ISET) (Rarecells Diagnostics, Paris, France) uses filtration
to identify CTCs by their size. In this manner, ISET can identify both EpCAM+ and EpCAM− CTCs.
Some studies have reported a loss of EpCAM+ CTCs but ISET has been shown to identify higher
CTC counts in the peripheral blood than CellSearch and the identified CTCs are associated with
survival [12–15]. In other words, ISET could be a useful method to process larger volumes of DLA
product, identifying a higher number of CTCs. We thus aim to compare CTC counts of NSCLC patients
using ISET with an optimized protocol for DLA products and CellSearch.

2. Results

2.1. NSCLC Patients and Filtration

First, we used 18 filtrations of DLA product to optimize the ISET protocol (Appendix A). Thereafter,
with the adapted protocol, the DLA products of 16 patients were successfully processed (Table A1).
The mean DLA procedure time was 95 minutes (standard deviation [sd] = 20 min). During this time,
an average 86% of the patients’ blood volume was processed, resulting in 80 mL of DLA product
(including 12 mL of acid citrate dextrose solution A [ACDA] for anticoagulation). The vast majority of
cells in the DLA product were concentrated in leukocytes and platelets (Table S1). Using lymphocytes
as a reference, the mean efficacy of the procedure reached 65% (IQR = 59–71). Blood cell values
decreased during apheresis, partly due to the removal of the cells and in part due to dilution (Table S2).
DLA procedures were well tolerated and without adverse events, except for minor paresthesia in
two patients (classified as grade I, not requiring any intervention, or II, requiring medication), either
resolved by administering oral calcium or decreasing the speed of the procedure. Paresthesia is a
known side effect of ACDA. All patients signed informed consent before being included in the study.

2.2. Spiking Efficacy and Immunostaining Control

Two samples were spiked with 100 H292 cells. These were subsequently filtered according to the
adjusted protocol. The filters were stained with EpCAM and CD45 in two spots. We identified 65%
and 80% of expected H292 cells, respectively. Two other spots were stained with TTF1 and CD45, and
(as expected) no cells were identified.
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2.3. CTC Identification by ISET

All 16 DLA products processed with the adapted protocol were filtered successfully. CTC counts
were identified in in 88% (14/16, Figure 1A) of the patients with ISET. EpCAM+ CTCs were detected in
75% (12/16) and TTF1+ CTCs were also detected in 75% (12/16, Figure 1B). The total median CTC count
detected by ISET was 3.8 CTC/mL DLA product (IQR = 1.3–4.0, Figure 2A). The median EpCAM+

CTC count was 1.0 per mL DLA (IQR = 0.3–2.8), while the median TTF1+ CTC count was 2.5 per mL
DLA (IQR = 1.3–3.0). The highest count on one spot was a cluster of 18 CTCs. In two patients, we
observed only EpCAM+ CTCs (Figure 3A) and only TTF1+ CTCs in two other patients (Figure 3B).
Immunohistochemical (IHC) staining for both TTF-1 and EpCAM showed TTF1+ CTCs that were
negative for EpCAM and vice versa (Figure 3C).
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CTCs expressing the epithelial cell adhesion molecule (EpCAM) (B) have been shown.
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Figure 3. Circulating tumor cells (CTCs) detected on ISET filters after filtration of diagnostic
leukapheresis product of non-small-cell lung cancer (NSCLC) patients. CTCs were detected with
immunocytochemistry in three different manners: Cells positive for the epithelial cell adhesion molecule
(stained red) with CD45 (stained brown) as a negative marker (A); TTF1 or p40 (stained brown) as a
positive marker, with CD45 as a negative marker (stained red); (B) and a combination of TTF1 with
EpCAM (C). Images were taken with a focus of 200×. White arrow: 8 µm pores of the filter. Red arrow:
two cells suspected to be EpCAM and TTF1 positive; black arrow: TTF1-positive, EpCAM-negative
cell, blue arrow: EpCAM-positive cell.

2.4. Comparison to CellSearch

ISET processed significantly more cells and volume of DLA product compared to CellSearch, but
in lower concentrations (Table 1). CTCs were detected in 69% (11/16) by CellSearch and in 88% (14/16)
by ISET (p < 0.05 by matched comparison, Figure 1A). In one patient, no CTCs were detected by any
method. CellSearch detected a median CTC count of 0.9 per mL (IQR = 0–1.8), while ISET detected a
median count of 3.8 (IQR = 1.3–4.0, p < 0.01, Figure 1B).

Table 1. Sample and dilution volumes with cell counts processed by CellSearch and ISET for
CTC enumeration.

Sample Characteristics Unit/Blood Cells CellSearch (n = 16) ISET (n = 16)

Sample volume DLA product (mL) 1.5 (1.1–2.5) 10

Absolute number of
processed blood cells (× 108)

Leukocytes 2 10 (7.1–15.9)
Lymphocytes 0.8 (0.6–1.1) 4.3 (3.7–6.9))

Monocytes 0.4 (0.3–0.5) 2.1 (1.3–3.7))
Granulocytes 0.9 (0.7–1.1) 5.3 (2.1–7.6)

Platelets 26.3 (19.3–44.7) 152.6 (91.4–172.7)
Erythrocytes 9.6 (5.6–1.4) 65.0 (45.5–91.8)

Dilution and total volumes
Total sample (mL) 7.5 110
Dilution material CellSearch buffer ACDA/ISET buffer
Dilution volume 6 (5.0–6.4) 10/90

Concentrations per mL
sample (× 106/mL)

Leukocytes 26.7 9.0 (6.4–14.5)
Lymphocytes 10.4 (8.1–14.4) 4.0 (3.4–6.2)

Monocytes 5.7 (4.4–6.5) 1.9 (1.2–3.4)
Granulocytes 12.6 (9.5–14.3) 4.8 (1.9–6.9)

Platelets 350.6 (257.2–596.5) 138.7 (83.1–157.0)
Erythrocytes 0.1 (0.1–0.2) 0.1 (0.1–0.1)

Limiting factor Number of leukocytes NA
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The EpCAM+ CTC detection rate of ISET (75%) and CellSearch (69%) was similar (p = 0.5,
Figure 1B). Counts of EpCAM+ CTC/mL DLA product also did not differ between ISET (median 1.0,
IQR = 0.3–2.8) and CellSearch (median = 0.9, IQR = 0–1.8) (p = 0.2, Figure 2B). Absolute detected
counts by ISET remained significantly higher compared to CellSearch (median = 5.0, IQR = 1.3–13.8,
median = 1, IQR = 0.2–2.8, respectively, p < 0.01).

2.5. Live Cell Protocol

In eight patients, the live cell protocol was used. FACS identified populations of EpCAM+ cells,
which did not express an erythrocyte (CD235A) or leukocyte marker (CD45). From the eight patients,
we isolated 474, 188, 126, 47, 32, 30, 5 and 2 EpCAM+ CD45−CD235A− cells from 5–10 mL of DLA
product by FACS, respectively. However, these cells had too low reads in single-cell whole-genome
sequencing (scWGS) to come to reliable conclusions.

3. Discussion

The ISET filtration system was capable of processing a volume of 10 mL of DLA product for fixated
cells. With the live cell protocol, the DLA product volume processed was between 10 and 20 mL, using
half of the ISET filter. The FDA-cleared CellSearch system is widely used for CTC detection and is the
current gold standard, but the volume of DLA product that can be processed is restricted. CellSearch
uses positive immunomagnetic selection to extract cells expressing EpCAM from the processed sample.
Leukocytes are also extracted by non-specific interactions with the EpCAM immunomagnetic particles.
Therefore, CellSearch can only process samples with a limited number of white blood cells, estimated
to be 2 × 108 leukocytes [9–11]. While this poses no issue for peripheral blood samples, this limitation
restricts the volume of DLA product (1–4 mL) that can be processed, since DLA products contain a
high concentration of leukocytes. After using additional anticoagulant in the fixed cell protocol, ISET
was capable of processing up to 10 mL of DLA product, which contained between 3- and 8-fold as
many leukocytes as could be handled by CellSearch. The number of CTCs detected by ISET had a
larger standard deviation, due to the larger volumes screened and higher counts identified.

With immunohistochemistry, we identified both EpCAM− and EpCAM+ CTCs, in agreement
with previous findings when investigating CTCs in the peripheral blood [12,16,17]. EpCAM+ CTCs
were still identified in the DLA product, despite a previous report that some of these cells might
be lost by ISET when examined in prostate cancer patients [15]. Possibly the size of CTCs derived
from prostate cancer is smaller than CTCs derived from NSCLC, causing them to be able to pass
through the ISET filter. However, whether this is responsible for this difference has to be further
investigated. Besides EpCAM, cytokeratin is a commonly used marker. We did not utilize this marker
for several reasons. It has been reported that cytokeratin expression is sometimes downregulated in
CTCs [18,19]; cytokeratin is used for cytoplasmic staining and EpCAM is used for membrane staining.
Thyroid transcription factor-1 (TTF-1) is a well-known and routinely used marker by pathologists for
the identification of adenocarcinoma of the lung and thyroid cancers [20]. TTF1 is a nuclear marker
that stains very strongly, making it relatively easy to detect. In our patients, it was known that their
primary tumors were positive for TTF1. Moreover, it is known that TTF1 is not expressed in blood
cells, making it a very useful marker for the identification of CTCs in the blood [20,21].

The larger volume that was screened for CTCs with ISET resulted in a significantly increased
CTC detection rate. CellSearch was very sensitive in detecting the presence of EpCAM+ CTCs, even
in small volumes. EpCAM+ CTCs were detected in similar proportions of patients and in similar
concentrations by CellSearch and ISET. As EpCAM+ CTCs are possibly more strongly associated with
clinical outcome, both CellSearch and ISET function well for CTCs that have been proven to be both
predictive and prognostic [5]. However, due to the larger volume processed by ISET, this procedure
can isolate a larger number of CTCs for further functional or genomic analysis.

Cells obtained with the live cell protocol were analyzed by FACS, which was capable of identifying
populations of EpCAM-positive cells. Unfortunately, the DNA quality of isolated cells turned out to be



Cancers 2020, 12, 896 6 of 15

quite low or had too few reads to draw conclusions. A possible explanation is that the CTCs were
unable to withstand the shearing stress of the sorter, resulting in their destruction [22]. However, it
has been shown before that FISH can be used on ISET filters to identify rearrangements, proving the
malignant origin of cells identified in this manner [23].

It is also known that FACS is capable of identifying cell populations, but lacks sensitivity to
capture rare cells efficiently [24–26]. This makes it a less than ideal method to capture CTCs—both in
the blood and in the DLA product—even after concentrating CTCs by ISET. Alternatives to identifying
CTCs with a high specificity would be by combining morphology, genomic and/or functional analyses.
This would be an important development for clinical application of CTCs [27–29].

Due to the association of CTCs with shorter survival and their use to monitor disease status
longitudinally, the detection of CTCs has been a topic of interest for years [2,12,16,30–37]. Just their
presence at baseline is associated with lower tumor responses to immunotherapy, chemotherapy
and targeted therapy [1]. However, if CTCs cannot be reliably detected, their clinic application
remains limited.

CTC detection has been increased by DLA in prostate and breast cancer patients before, but only
small volumes of DLA product were processed [9–11,38]. DLA is a well-tolerable procedure, even in
our NSCLC population, and has few complications, while placing minimal burden (only two hours
of time) on patients [39–42]. Also the calculated efficacy of our procedures in isolating mononuclear
cells (MNCs) was shown to be comparable with that of isolating stem cells, and DLAs in breast cancer
patients [8–11,43]. In the evolving area of immunotherapy, this method can also be used to study
different T-cell populations. Here, we show that a larger volume of DLA product can be processed
with ISET, allowing for more reliable CTC detection. At this time, apheresis is not used diagnostically
but only therapeutically for hematological patients. Yet based on our results, apheresis could be used
as a diagnostic tool in patients whose biopsies failed or where the tumor is inaccessible. With DLA,
sufficient CTCs could be isolated to allow for diagnostic tests and tumor typing to be performed.
As shown in our study and others, complications associated with DLA are mild and rare, making it an
easily tolerable procedure even for NSCLC patients [39–42]

The number of included patients in our study was relatively small and heterogeneous in stage
and treatment line. However, previous studies have shown that the number of CTCs is not influenced
by these patient characteristics, and any influence of patient characteristics is accounted for since
the comparisons were performed for each patient in a matched manner. Therefore, the power was
increased sufficiently to observe significant outcomes. Furthermore, the automated identification
of CTCs, e.g. as by the ACCEPT program which is being developed for CellSearch, would greatly
improve the objective identification of CTCs [44–46]. The DLA, while very tolerable, remains a costly
procedure that takes 2 hours per patient. ISET is very labor intensive. Using DLA and ISET to obtain
CTCs for all NSCLC patients would be untenable. Still it could be used in patients with inaccessible
tumors or in whom even repeated biopsies could not provide sufficient material for diagnostics.

4. Materials and Methods

4.1. Patient Inclusion and Clinical Data

Patients with proven NSCLC were prospectively included in an exploratory cohort. Eligibility
criteria were an Eastern Cooperative Oncology Group performance status (PS) of 0–2, no use of
anticoagulation and no clotting disorders. All patients started (a new line of) treatment at time of
inclusion. Informed consent was obtained from all patients.

The study was approved by the Medical Ethical Committee (2015/602) and was registered in the
Dutch trial register (NL55754.042.15/NL5423).
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4.2. Diagnostic Leukapheresis Procedure

DLAs were carried out with the Spectra Optia® Apheresis System 11 (Terumo BCT Inc., Lakewood,
CO, USA), as previously described [10]. We aimed to process the total body blood volume (TBV), as
calculated by the formula of Nadler [47]. Before and after this procedure, an EDTA tube was taken for
a full blood count. Procedure efficacy was calculated by dividing the number of lymphocytes in the
total DLA product by the total number of lymphocytes that passed through the machine while the
DLA product was collected.

4.3. The Adapted ISET Protocol for Fixated Cells

First, we processed different volumes of DLA product according to the protocol for fixed cells
in blood (Appendix A). The protocol was adapted, as too many DLA products could not be filtered
efficiently. Filtration failure was correlated with the volume of processed DLA product (ρ = 0.69,
p < 0.01) and platelet count in the DLA product (ρ = 0.75, p < 0.01). Consequently, we used additional
anticoagulation in the adapted protocol. DLA product was diluted 1:1 with ACDA and placed in
blood collection tubes coated with EDTA (Becton Dickinson, Etten Leur, The Netherlands). No further
filtration problems were encountered and we filtered 10 mL of DLA product, diluted with 10 mL
ACDA in EDTA tubes, according to the standard ISET protocol [48]. In short, 20 mL of the DLA and
ACDA mixture was further diluted with 90 mL of fixed ISET buffer and mixed for 10 min. Afterwards,
the sample was transferred to the (prehydrated) ISET block and filtered with the pressure set between
−10 and −25 kPA. After filtering the sample, CTCs were detected with immunocytochemistry (ICC)
staining. As a positive marker, either the membrane staining of EpCAM (Ventana ReadyToUse
760–4383, Roche Diagnostics, Almere, The Netherlands) or a nuclear marker was used (either TTF1
[Ventana ReadyToUse 790–475, Roche Diagnostics, Almere, The Netherlands] recognizing the majority
of adenocarcinomas or p40 [Venta ReadyToUse 790–4950, Roche Diagnostics, Almere, The Netherlands]
detecting the majority of squamous cell carcinomas, depending on which one was positive in the
primary tumor biopsy). As a negative marker, combined with either of the two positive markers, we
used the membrane staining of CD45 (DAKO M0701, Stevens Creek, CA, USA). Between 3 and 6 spots
of each ISET filter were evaluated for CTCs, following the procedure by Krebs et al. [12]. A certified
pathologist (W.T. and M.T.) identified CTCs on the basis of immunocytochemistry. Two DLA products
were spiked before filtration with 100 H292 cells. Afterwards, the capture efficacy was calculated.

4.4. CTCs Recognized by CellSearch

CellSearch identified CTCs in a DLA aliquot of 2 × 108 leukocytes, diluted with CellSearch
Circulating Tumor Cell Kit Dilution Buffer (Menarini Silicon Biosystems, Huntingdon Valley, PA, USA)
to 7.5 mL and placed in a Cellsave tube (Menarini). After the tube was stored at least overnight at
room temperature, the sample was centrifuged at 800 g for 10 min before analysis. Sample processing
occurred within 72 h using CellSearch according to the manufacturer’s instructions (Menarini Silicon
Biosystems, Huntington Valley, PA, USA) [11]. CellSearch cartridges were scanned using the CellTracks
Analyzer II (Menarini) and analyzed by a trained operator. Cells were classified as CTCs when they
were EpCAM+ cytokeratin+ and CD45−, with a morphology consistent with a nucleated cell.

4.5. Live Cell Protocol

In addition to fixed cells, we wanted to explore the protocol for live cell isolation by ISET, as these
live cells can be cultured and later analyzed by different molecular methods. Live cells were isolated
from 10–20 mL of DLA product, diluted 1:1 with ACDA and placed in EDTA tubes after ISET live
buffer was added (4:1). Subsequently, the standard live cell protocol of ISET was followed [48]. In short,
10–20 mL of DLA with ISET buffer was filtered with the pressure set to between −4 and −10 kPa.
During this process, the filter was washed and always remained submerged in DPBS until the liquid
was clear. A 1 mL pipette was used to wash cells of the filter and aspirate 1 mL fluid, which was placed
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in a 15 mL tube. This was repeated 5 times. Afterwards, the tube was centrifuged at 120 g for 10 min.
Live cells were stored for further experiments such as single-cell whole-genome sequencing (scWGS).
Filtered cells were fixated with formaldehyde 1% (end concentration 0.1%). Fluorescence-activated cell
sorting ([FACS] BD FACSJazz, BD biosciences, Allschwil, Switzerland) was used to sort the cells and
identify cell populations. For DLA products processed with the live cell protocol, CTCs were defined
as cells containing a nucleus and expressing EpCAM, while lacking CD45 (leukocyte marker) and
CD235A (erythrocyte marker). These single cells were isolated and placed into a 96-well plate and
used for scWGS.

4.6. Single-Cell Whole-Genome Sequencing

Single isolated CTCs were stored in freeze buffer after isolation. We performed scWGS as described
previously with some minor modifications [49]. In short, upon MNase treatment, de-crosslinking was
performed by incubation at 65 ◦C for 1 h in the presence of Proteinase K (0.025U) and NaCl (200 mM),
followed by AMPure XP bead purification and subsequent end repair and A-tailing. During PCR,
indexes were introduced to each DNA fragment allowing multiplexing of the libraries for sequencing.
All libraries were sequenced with the Illumina NextSeq 500. Data analysis was performed using the
AneuFinder package [49,50].

4.7. Statistical Analysis

From the DLA product, the number of CTCs identified with ISET was compared with those from
CellSearch. Comparisons were performed using non-parametric matched analyses. Differences in
the proportion of patients with CTCs were evaluated with McNemars test. CTC counts per mL DLA
product were compared with Wilcoxon’s matched analysis.

We estimated that CellSearch would detect CTCs in 50% of patients, while the filtration methods
would detect CTCs in 90% of patients. Assuming a good association between both measurement types
(ρ = 0.66) with β = 0.2 and α = 0.05, 15 matched comparisons were required.

5. Conclusions

ISET was capable of processing 10 mL volumes of DLA product with an adjusted fixated cell
protocol. CTCs were detected in the majority of patients (88%). The adjusted live cell protocol could be
used to process up to 20 mL of DLA product on half an ISET block, allowing the capture of a sufficient
number of CTCs for tumor typing not only by IHC but also for single-cell genomics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/896/s1,
Table S1: Blood cell counts in peripheral blood and DLA product; Table S2: Mean cell counts (pre and post
apheresis) in blood and in diagnostic leukapheresis product.
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Appendix A

Appendix A.1. The Standard ISET Protocol for Fixed Cells

The ISET instruction manual for processing CTCs obtained from venous blood was followed. ISET
filters the samples through a disposable block, which consists of six compartments. One compartment
leads to five filtration spots (locations where cells pass through the filter) and can contain a volume of
up to 50 mL (intended 5 mL sample and 45 mL ISET buffer). The other five compartments each lead to
one spot and can contain a volume of up to 10 mL (1 mL sample and 9 mL ISET buffer) (Appendix A
Figure A1).

We used the five small compartments to filter different volumes of DLA product (0.1, 0.25, 0.5, 0.75
and 1 mL), diluted to 1 mL with Dulbecco’s Phosphate-Buffered Saline (DPBS, ThermoFisher, Waltham,
MA, USA) (Appendix A Figure A1). The filter procedure was carried out according to the protocol
provided by Rarecells diagnostics and was previously described [17]. In short, after prehydration of all
compartments, a 10 mL (sample with ISET buffer) sample was deposited into each small compartment.
The pump was set at −10 kPA and the valve was opened, allowing for filtration of the sample. If the
sample did not filter, the pressure was adjusted up to a maximum of −25 kPA. The largest volume of
DLA product which filtered successfully within 5 minutes at −20 kPa was used further on for the large
compartment (volume ×5). The same procedure would be followed then.

Table A1. Characteristics of filtered diagnostic leukapheresis samples by ISET®, according to original
protocol (cohort 1), adjusted protocol (cohort 2) and the live cell protocol by half the filter.

Processed Blood Cells ISET Cohort 1
(n = 18) *

ISET Cohort 2
(n = 16) **

ISET Live Cell
(n = 8) ***

Sample volume
(mL) DLA product 0.5–5 5 10–20

Absolute blood cell
counts processed

(×108)

Leukocytes 4.6 (3.7–7.3) 5 (3.6–8.0) 18.6 (9.6–33.9)
Lymphocytes 1.9 (1.5–2.7) 2.2 (1.9–3.5) 7.7 (4.8–12.0)

Monocytes 0.8 (0.6–1.2) 1.1 (0.7–1.8)) 2.4 (1.6–4.7)
Granulocytes 1.9 (0.9–3.5) 2.6 (1.1–3.8) 8 (3.3–17.5)

Platelets 78.7 (69.5–94.8) 76.3 (45.7–63.9) 319.4 (199.1–500.8)
Erythrocytes 19.8 (15.7–32.1) 32.5 (22.8–45.9) 76.5 (50.5–219.0)

Dilution and total
processed sample

(mL)

Dilution material DPBS and fixed
ISET buffer

ACDA and fixed
ISET buffer

ACDA and live
ISET buffer

Dilution volume 0–4.5 and 45 5 and 45 10–20 and 80–160
Total sample 50 55 100–200

Concentrations per
mL sample
(×106/mL)

Leukocytes 9.2 (7.4–14.6) 9.0 (6.4–14.5) 9.3 (7.6–26.2)
Lymphocytes 3.8 (2.9–5.5) 4.0 (3.4–6.2) 4.1 (3.9–7.8)

Monocytes 1.6 (1.3–2.4) 1.9 (1.2–3.4) 1.4 (1.2–3.5)
Granulocytes 3.8 (1.9–7.0) 4.8 (1.9–6.9) 4.0 (2.5–15.0)

Platelets 157.3 (139.1–189.6) 138.7 (83.1–157.0) 268.9 (142.7–314.5)
Erythrocytes 0.04 (0.03–0.06) 0.1 (0.1–0.1) 0.1 (0.1–0.1)

Limiting factor Platelets None None

* Description of material filtrated by the large compartment of the ISET® filtration block is shown. ** Total filtered
volume has been divided by two, for comparison with the other two protocols. *** Description of the material
filtrated by the small compartment of the ISET® filtration block is shown.



Cancers 2020, 12, 896 10 of 15
Cancers 2020, 12, x 10 of 16 

 

 
Appendix Figure A1. Top view of an (schematic) ISET filter (A), with the dilutions of the different 
tested protocols. First, the standard protocol was followed as closely as possible with different 
dilutions (B). By using additional anticoagulant, the adjusted protocol (C) was able to process up to 
10 mL of DLA product without fail. With additional anticoagulant, the live cell protocol was capable 
of filtering up to 20 mL of DLA product with just half a filter (D). The other half (the large 
compartment) was used to filter an additional 5 mL of DLA product with the adjusted protocol. No 
significant differences between DLA products processed with the different protocols were observed 
(Appendix Tables A1 and A2). 

Figure A1. Top view of an (schematic) ISET filter (A), with the dilutions of the different tested protocols.
First, the standard protocol was followed as closely as possible with different dilutions (B). By using
additional anticoagulant, the adjusted protocol (C) was able to process up to 10 mL of DLA product
without fail. With additional anticoagulant, the live cell protocol was capable of filtering up to 20 mL of
DLA product with just half a filter (D). The other half (the large compartment) was used to filter an
additional 5 mL of DLA product with the adjusted protocol. No significant differences between DLA
products processed with the different protocols were observed (Appendix A Tables A1 and A2).
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Table A2. Characteristics of non-small-cell lung cancer patients undergoing apheresis and
ISET® filtering.

Characteristic Specified Original Protocol
(n = 18)

Adjusted Protocol
* (n = 16)

Live Cell Protocol
* (n = 8)

Age Mean (sd) 64 (7) 68 (11) 67 (7)

Gender
Male 12 (67) 10 (62) 4 (80)

Female 6 (33) 6 (38) 1 (20)

ECOG PS

0 8 (44) 9 (56) 5 (63)
1 7 (39) 4 (25) 2 (24)
2 3 (17) 2 (13) 0 (0)
3 0 (0) 1 (6) 1 (13)

Smoking status
Smokers 14 (78) 7 (44) 3 (38)
Previous 1 (6) 5 (31) 3 (38)

Non-smokers 3 (17) 4 (25) 2 (24)

Stage

I 1 (6) 2 (13) 0 (0)
II 1 (6) 1 (6) 0 (0)
III 0 (0) 3 (19) 0 (0)
IV 16 (89) 10 (62) 8 (100)

Histology
Adenocarcinoma 14 (78) 9 (56) 6 (75)

Squamous cell 4 (22) 4 (25) 2 (25)
other 0 (0) 3 (19) 0 (0)

Mutations

None identified 7 (39) 6 (38) 4 (50)
KRAS 7 (39) 5 (31) 2 (25)
ALK 3 (16) 0 (0) 0 (0)
Other 1 (6) 5 (31) 2 (25)

Therapy line

0 2 (11) 5 (31) 3 (37)
1 6 (33) 7 (44) 2 (25)
2 7 (39) 4 (25) 3 (37)
≥3 3 (17) 0 (0) 0 (0)

Treatment

Surgery 2 (11) 3 (19) 0 (0)
Chemo(radio)therapy 1 (6) 2 (13) 0 (0)

Immunotherapy 11 (61) 9 (56) 7 (87)
Targeted therapy 4 (22) 2 (12) 1 (13)

Blood
Total blood volume (L) 5.2 (0.8) 5,1 (0.9) 5.3 (0.8)
Processed volume (L) 4.8 (1.1) 4.2 (1.0) 5.0 (0.6)

Percentage processed (sd) 89 (21) 84 (16) 96 (5)

DLA product mL (sd) 83 (21) 75 (17) 85 (7)
ACDA (sd) 12 (3) 12 (4) 11 (1)

* Patients undergoing the live cell protocol are also included in the adjusted protocol population (half the ISET block
was used for the adjusted protocol, and half for the live cell protocol).

Appendix A.2. CTC Detection Standard Protocol

The filters were stained with a Giemsa staining (hemacolor, Merck, Darmstadt, Germany) according
to the manufacturer’s instructions [38].

Appendix A.3. Adjustment of the ISET Protocol for Fixed Cells

The protocol was adjusted after filtering 18 DLA samples when twelve samples failed; they could
not be evaluated (six due to coagulation and clogging of the filter, as shown in Appendix A Figure A2,
six due too much cellular material on the filter for evaluation). In four out of six DLA products that
were successfully filtered, we identified CTCs (66%, Appendix A Figure A2). Failure to filter and
filtration time were associated with the volume of processed DLA product (ρ = 0.69, p < 0.01) and
platelet count in the DLA product (ρ = 0.75, p < 0.01). Thus, additional anticoagulation was used, and
the DLA product was diluted in a 1:1 ratio with ACDA and placed in blood collection tubes coated
with EDTA (Becton Dickinson, Etten Leur, The Netherlands). Two DLA products were filtered with
different volumes as before in the five small compartments (0.1, 0.25, 0.5, 0.75 and 1 mL pure DLA
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product per respective spot). No filtration problems were encountered anymore, and both samples
filtered the largest volume of DLA (1 mL per spot, and 5 mL for the large compartment). From then on,
we filtered 10 mL of DLA product, diluted with 10 mL ACDA and placed in EDTA tubes according to
the standard ISET protocol [17].
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Figure A2. Aggregates (A) and identified circulating tumor cells (B) observed on ISET filters after
the filtration of diagnostic leukapheresis product obtained from non-small-cell lung cancer patients.
Staining was performed with Giemsa, and CTCs were identified by their large size, relatively large
nucleus and other morphological characteristics by a certified pathologist.

Appendix A.4. Adjustment for CTC Detection

While Giemsa staining was originally used for CTC detection on ISET filters, the three-dimensional
plane of the cells on the ISET filters hampered identification by our pathologist (WT). In order to
provide more evidence that cells were CTCs, we used additional immunohistochemical (IHC) staining.
Three different combinations of antibodies were used. EpCAM (Ventana ReadyToUse 760–4383, Roche
Diagnostics, Almere, The Netherlands) or a nuclear marker was used as a positive marker (either TTF1
[Ventana ReadyToUse 790–475, Roche Diagnostics, Almere, The Netherlands], recognizing the majority
of pulmonary adenocarcinomas or p40 [Ventana ReadyToUse 790–4950, Roche Diagnostics, Almere,
The Netherlands], recognizing squamous cell carcinomas, depending on which one was positive in the
primary tumor biopsy). This staining was combined with EpCAM (Ventana ReadyToUse 760–4383,
Roche Diagnostics, Almere, The Netherlands) and CD45 (DAKO M0701, Stevens Creek, CA, USA),
with the latter as a negative marker for CTCs. In total, 3–6 spots in each filter were evaluated for
CTCs, following the procedure by Krebs et al. [12]. Several slides were also stained for cytokeratin
(Ventana ReadyToUse 760–2595, Roche Diagnostics, Almere, The Netherlands) when enough spots
were available. However, it proved to be more reliably to use TTF1 than cytokeratin and EpCAM
staining. Therefore, we dropped cytokeratin for the majority of filters and favored TTF1. In these
filters, clusters of cells still did occur, but were no longer obstructing assessment for CTCs.
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