Prognostic significance of CEACAM5mRNA-positive circulating tumor cells in patients with metastatic colorectal cancer

Ippokratis Messaritakis1 · Maria Sfakianaki1 · Chara Papadaki1 · Asimina Koulouridi1 · Nikolaos Vardakis2 · Filippos Koinis2 · Dora Hatzidaki1 · Nefeli Georgoulia1 · Athina Kladi3 · Athanasios Kotsakis1,2 · John Souglakos1,2 · Vassilis Georgoulias1

Received: 6 May 2018 / Accepted: 4 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Purpose To evaluate the clinical relevance of CEACAM5mRNA-positive circulating tumor cells (CTCs) in patients with metastatic colorectal cancer (mCRC).

Methods Peripheral blood was obtained from 436 patients with mCRC before the initiation of systemic therapy. A second sample was obtained on treatment assessment from 296 (67.9%) patients. The detection of CEACAM5mRNA-positive CTCs was performed using a real-time PCR assay.

Results The patients’ median age was 67 years and PS (EGOG 0–1) 92%; KRAS exon 2 and BRAFV600E mutated primary tumors were identified in 31.9% and 6.4% of the tested patients, respectively, whereas metastasectomy was performed in 17.7% of the patients. Circulating CEACAM5mRNA-positive CTCs were detected in 125 (28.7%) and 85 (28.7%) patients at baseline and on treatment assessment, respectively. The detection of CEACAM5mRNA-positive cells was revealed, in multivariate analysis, as an independent prognostic factor associated with decreased PFS (HR 1.6; 95% CI 1.1–2.5; \(p = 0.026 \)) and OS (HR 2.2; 95% CI 1.3–3.2; \(p < 0.001 \)). The detection of CEACAM5mRNA-positive CTCs in patients with KRAS and BRAFV600E mutations was correlated with shorter PFS (\(p = 0.041 \) and \(p = 0.022 \), respectively). Moreover, OS was significantly shorter in patients with CEACAM5+/KRAS mutations compared to those with CEACAM5+/KRAS wt tumors (\(p = 0.023 \)).

Conclusions Detection of peripheral blood CEACAM5mRNA-positive CTCs is an adverse prognostic factor correlated with poor clinical outcome in patients with mCRC, especially in patients with KRAS and BRAF mutated tumors.

Keywords CEACAM5 · mRNA · CRC · Metastatic · CTCs

Introduction
Colorectal cancer (CRC) is the second most common cause of mortality due to cancer [1, 2], and is a major health problem in the Western world representing approximately 10% of all cancer cases with 40–50% of all patients experiencing metastasis [2–4]. Unfortunately, the current routine clinical manifestations, radiologic evaluations and serum tumour markers do not provide enough information of the ongoing metastasis as early as possible or predicting the clinical outcome with high accuracy and reproducibility [5]. The high metastatic potential of the disease is due to the dissemination of tumor cells through the hematogenous and/or the lymphatic vasculature. The detection of tumor cells in the peripheral blood (circulating tumor cells; CTCs) and bone marrow aspirates (disseminated tumor cells; DTCs) has been described in cancer patients [6–12] and has been shown to be associated with
shorter progression-free (PFS) and overall (OS) survival in various tumor types, including CRC [13–21].

In patients with early-stage CRC, the detection of malignant cells in the bone marrow, the peritoneal lavage, and the involvement of the regional lymph nodes are associated with poor survival [22, 23]. Quantitative real-time RT-PCR (RT-qPCR) has been shown to provide the sensitivity and the practicability that is necessary to detect rare CTCs in patients’ blood [24]. In CRC, the most frequently analyzed marker is the carcinoembryonic antigen (CEA). The initial clinical studies have analyzed the usefulness of CEACAM5 mRNA for the detection of CTCs in blood samples of patients with CRC, but none of them have quantified the PCR product [25–28]. Nevertheless, a low level of CEACAM5 mRNA expression has been detected in normal subjects, suggesting an illegitimate expression of the CEACAM5 gene in hematopoietic cells [29, 30] whereas other studies have failed to show significant differences of CEACAM5 mRNA expression between cancer patients and healthy individuals [31]. These studies have been conducted using sets of primers that amplify a splice variant of CEACAM1 expressed in hematopoietic cells (WBCs), in which an “intron” sequence replaces part of the exon 10 [29], thus explaining the findings of CEACAM5 mRNA expression in normal blood samples [30], in patients with inflammatory bowel disease [31] and in cultured WBCs after induction with G-CSF [32]. On the basis of the aforementioned results, the overall usefulness of CEACAM5 as a PCR-based tumor cell detection marker remained questionable.

Our group has previously reported the development of a reliable and reproducible RT-qPCR assay for the detection of CEACAM5 mRNA CTCs in CRC. The detection of CEACAM5 mRNA-positive cells in patients with operable (stages II–III) CRC has been correlated with poor clinical outcome [21]; in this study, we have analyzed 100 samples from patients with mCRC as validation set. We reported that outcome [21]; in this study, we have analyzed 100 samples from patients with mCRC, but none of them have quantified the PCR product [25–28]. Nevertheless, a low level of CEACAM5 mRNA expression has been detected in normal subjects, suggesting an illegitimate expression of the CEACAM5 gene in hematopoietic cells [29, 30] whereas other studies have failed to show significant differences of CEACAM5 mRNA expression between cancer patients and healthy individuals [31]. These studies have been conducted using sets of primers that amplify a splice variant of CEACAM1 expressed in hematopoietic cells (WBCs), in which an “intron” sequence replaces part of the exon 10 [29], thus explaining the findings of CEACAM5 mRNA expression in normal blood samples [30], in patients with inflammatory bowel disease [31] and in cultured WBCs after induction with G-CSF [32]. On the basis of the aforementioned results, the overall usefulness of CEACAM5 as a PCR-based tumor cell detection marker remained questionable.

The aim of the present study was to prospectively investigate the clinical relevance of CEACAM5 mRNA-positive CTCs in patients with mCRC, providing, thus, a clinically useful new prognostic biomarker.

Patients and methods

Patients’ population

Four hundred and thirty-six consecutive patients, with newly diagnosed and histologically documented mCRC treated at the Department of Medical Oncology, University Hospital of Heraklion (Greece), were enrolled in the study. There were no other exclusion criteria for enrollment. All patients were tested for the presence of circulating CEACAM5 mRNA-positive CTCs before the initiation of any systemic front-line treatment; moreover, in 294 (67.4%) patients a second blood sample was obtained at the time of treatment assessment. Treatment administration as well as treatment assessment were coded without the knowledge of the CTC status. The study was approved by the Ethics Committee/Institutional Review Board of the University Hospital of Heraklion (Greece) (Number 7302/19-8-2009) and all patients signed written informed consent to participate in the study.

Peripheral blood (15 mL in EDTA) was obtained at the middle-of-vein puncture after the first 5 mL of blood was discarded to avoid contamination with epithelial cells from the skin. The evaluation of the analytical sensitivity and specificity of the method has been previously described [21].

Specimen characteristics and assay methods

Peripheral blood mononuclear cells (PBMCs) were isolated by gradient density centrifugation and RNA extraction was performed as previously described [33]. RNA concentration was determined using the NanoDrop (Thermo Scientific, USA) equipment. Amplification of the β-actin as internal reference gene was done to verify the RNA integrity. RNA prepared from the LoVo colorectal and ARH-77 leukemic cell lines was used as positive and negative controls, respectively. The reverse transcription and the qPCR conditions have been previously described [21]. Quantification of gene expression was performed using the ABI Prism 7900HT Sequence Detection System (Applied Biosystems, USA). All experiments were performed in triplicates. Quantification was based on an external calibration curve that was obtained using external standard cDNAs [21]. The SDS 2.3 software was used for the analysis of the results. Finally, genomic DNA contamination was excluded, as no RNA transcripts could be detected in each analyzed sample in the absence of reverse transcriptase.

KRAS exon 2 and BRAFV600E mutational analysis were performed in the context of the standard clinical practice using Sanger sequencing after PCR amplification [34] and an allelic discrimination method based on real-time PCR [35], respectively. Since the study was initiated before the description of the predictive value of NRAS mutations for treatment efficacy [35], a retrospective mutation analysis of this gene was not performed.

Study design and statistics

The aim of this study was to explore the prognostic significance of CEACAM5 mRNA-positive CTCs in patients...
with mCRC and correlate their detection with pathologi-
cal and clinical characteristics of the disease. Due to its
observational nature no formal sample size calculation was
performed. The cut-off value of ≥ 0.69 Lovo cells equival-
ents/5 µg of RNA has been previously suggested [21].
Based on this cut-off value and to better investigate the role
of CEACAM5mRNA-positive CTCs in patient’s outcome, we
attempted to divide the patients into three groups according
to the levels of CEACAM5mRNA-positive CTCs with the
assumption of the higher risk associated with higher lev-
els of CEACAM5mRNA-positive CTCs: (1) low ≤ 0.69 (neg-
ative group), (2) middle 0.7–1.91 (intermediate group) and
(3) high (positive group) ≥ 1.92 Lovo cells equivalents/5 µg
of RNA. Summary tables (descriptive statistics and/or fre-
cency tables) are provided for all baseline and efficacy vari-
ables, as appropriate. Continuous variables are summarized
with descriptive statistics (n, median and range). Ninety-five
percent confidence intervals (95% CI) are also presented, as
appropriate. Progression-free survival (PFS) was defined as
the time from first treatment cycle until clinical or radiologi-
disease relapse or death from any cause. Overall survival
(OS) was measured from the date of first treatment cycle
until the date of death from any cause or the date of last
follow-up. Qualitative factors were compared by Pearson’s
Chi-square test or Fisher’s exact test whenever appropriate.
Differences in continuous variables were assessed using the
Kruskal–Wallis test. PFS and OS were estimated using the
Kaplan–Meier analysis and the comparisons were computed
with the log-rank test. Associations between prognostic
factors and PFS or OS were examined using Cox propor-
tional hazards regression models. All statistical tests were
classified as positive (high and/or intermediate) and
negative, respectively, at both time points (Suppl. Table 1).
According to the CTC status before and after chemotherapy,
33 (11.2%) patients who were initially CEACAM5mRNA
positive (high and/or intermediate) turned negative whereas
30 (10.2%) patients who were initially CEACAM5mRNA
negative turned positive (high and/or intermediate; Suppl.
Table 2). Moreover, 54 (18.4%) and 177 (60.2%) patients
were classified as positive (high and/or intermediate) and
negative, respectively, at both time points (Suppl. Table 1).

Results

Patients’ characteristics and clinico-pathological
features

The patients’ characteristics and the disease features
were typical for mCRC (Table 1). The median patients’
age was 67 years (range 20–88) and 39% of them were
aged ≥ 70 years, 62% were males and 92% had a PS (ECOG)
of 0–1; the primary tumor was located in the rectum in
32.3% of the patients and in 39% of the cases was undif-
differentiated (high grade), while KRAS exon 2 and BRAF
mutations were detected in 31.9% and 6.4% of the analyzed
tumors, respectively. All patients were treated with 5-FU-
based first-line chemotherapy combined in 95% of them
with oxaliplatin or irinotecan. In 178 (40.8%) patients,
chemotherapy was combined with Bevacizumab, while an

anti-EGFR-based combination was administered in 104
(23.9%) patients (Table 1). Seventy-seven (17.7%) patients
underwent a metastasectomy before the initiation of front-
line chemotherapy.

Detection of CEACAM5mRNA-positive CTCs
before chemotherapy

According to the degree of CEACAM5mRNA positivity at
baseline, 311 patients were considered as negative whereas
101 and 24 patients were considered to have an interme-
diate and a high positivity (Table 1). There was no correla-
tion between the patients’ clinico-pathologic characteristics
and the degree of CEACAM5mRNA positivity, except for
the patients who did not undergo surgery (Table 1). Among
the 77 patients who underwent up front metastasectomy for
liver or pulmonary metastases, 16 (20.8%) had detectable
CEACAM5mRNA-positive CTCs (intermediate or high posi-
tivity) compared to 109 (30.4%) patients who received only
chemotherapy (p = 0.241; Table 1).

Effect of chemotherapy on the detection
of CEACAM5mRNA-positive CTCs

In 294 (67.4%) patients, a second blood sample was obtained
at the time of treatment assessment. CEACAM5mRNA-
positive CTCs could be detected in 84 (28.6%) patients.
According to the CTC status before and after chemotherapy,
33 (11.2%) patients who were initially CEACAM5mRNA
positive (high and/or intermediate) turned negative whereas
30 (10.2%) patients who were initially CEACAM5mRNA
negative turned positive (high and/or intermediate; Suppl.
Table 1). Similarly, 54 (18.4%) and 177 (60.2%) patients
were classified as positive (high and/or intermediate) and
negative, respectively, at both time points (Suppl. Table 1).

Clinical outcome according to the detection
of CEACAM5mRNA-positive CTCs

Patients with a negative and an intermediate CEACAM-
5mRNA status had a comparable PFS (8.8 vs 8.7 months,
p = 0.671; Suppl. Table 2). Conversely, there was a statis-
tically significant difference of PFS between the patients
with negative CEACAM5mRNA and high positivity status
(8.8 vs 7.0 months, p = 0.013) (Suppl. Table 2; Fig. 1a).
The comparison of PFS between the CEACAM5mRNA-
intermediate and CEACAM5mRNA-high patients’ groups
showed a marked but not statistically significant difference
(8.7 vs 7.0 months, p = 0.063; Suppl. Table 2). Moreover,
the median OS was significantly higher in the group of
patients with a CEACAM5mRNA-negative status compared
with that of patients with a CEACAM5mRNA-positive
(high) status (23.4 vs 11.2 months, \(p < 0.001 \)); similarly, a significant difference in terms of median OS was observed between the patients with a \(CEACAM5mRNA \)-intermediate and \(CEACAM5mRNA \)-positive (high) status (23.7 vs 11.2 months, \(p = 0.001 \); Fig. 1b). Finally, the detection of \(CEACAM5mRNA \)-positive CTCs did not demonstrate any significant association with the clinical outcome (both PFS and OS) of patients who underwent a metastasectomy (data not shown).

Table 1 Patient characteristics according to different cut-offs

<table>
<thead>
<tr>
<th></th>
<th>Total ((n = 436))</th>
<th>(CEACAM5mRNA) status</th>
<th>(p) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N)</td>
<td>%</td>
<td>(N)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>270</td>
<td>62.0</td>
<td>189</td>
</tr>
<tr>
<td>Female</td>
<td>166</td>
<td>38.0</td>
<td>122</td>
</tr>
<tr>
<td>Median age</td>
<td>66.5 (20–88)</td>
<td>62 (25–88)</td>
<td>67 (20–83)</td>
</tr>
<tr>
<td>≤ 70 years</td>
<td>266</td>
<td>61.0</td>
<td>191</td>
</tr>
<tr>
<td>> 70 years</td>
<td>170</td>
<td>39.0</td>
<td>120</td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>295</td>
<td>67.7</td>
<td>210</td>
</tr>
<tr>
<td>Rectum</td>
<td>141</td>
<td>32.3</td>
<td>101</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I–II</td>
<td>254</td>
<td>58.3</td>
<td>181</td>
</tr>
<tr>
<td>III</td>
<td>170</td>
<td>39.0</td>
<td>122</td>
</tr>
<tr>
<td>UN</td>
<td>12</td>
<td>2.8</td>
<td>8</td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>353</td>
<td>81.0</td>
<td>257</td>
</tr>
<tr>
<td>No</td>
<td>83</td>
<td>19.0</td>
<td>20</td>
</tr>
<tr>
<td>Metastasectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>77</td>
<td>17.7</td>
<td>61</td>
</tr>
<tr>
<td>No</td>
<td>359</td>
<td>82.3</td>
<td>250</td>
</tr>
<tr>
<td>PS (ECOG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>401</td>
<td>92.0</td>
<td>288</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>8.0</td>
<td>23</td>
</tr>
<tr>
<td>KRAS exon 2 mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutated</td>
<td>139</td>
<td>31.9</td>
<td>104</td>
</tr>
<tr>
<td>Wild type</td>
<td>213</td>
<td>48.9</td>
<td>150</td>
</tr>
<tr>
<td>ND/UN</td>
<td>84</td>
<td>19.3</td>
<td>57</td>
</tr>
<tr>
<td>BRAF(^{V600E}) mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutated</td>
<td>28</td>
<td>6.4</td>
<td>17</td>
</tr>
<tr>
<td>Wild type</td>
<td>387</td>
<td>88.8</td>
<td>276</td>
</tr>
<tr>
<td>ND/UN</td>
<td>21</td>
<td>4.8</td>
<td>18</td>
</tr>
<tr>
<td>Regimens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT-11 based</td>
<td>197</td>
<td>45.2</td>
<td>143</td>
</tr>
<tr>
<td>LOHP based</td>
<td>151</td>
<td>34.6</td>
<td>108</td>
</tr>
<tr>
<td>Both</td>
<td>80</td>
<td>18.3</td>
<td>56</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>1.8</td>
<td>4</td>
</tr>
</tbody>
</table>

Patients’ clinical outcome according to the tumors’ molecular profile and the \(CEACAM5mRNA \) CTCs’ status

Patients with KRAS mutant tumors and detectable \(CEACAM5mRNA \)-positive CTCs presented significantly lower PFS (7.6 months, 95% CI 5.1–10.2 months) compared to those with undetectable CTCs and KRAS mutant tumors (9.0 months, 95% CI 7.4–10.6 months, \(p = 0.041 \)) (Table 3; Suppl. Fig. 1a); moreover, these patients had a significantly
lower OS (21.2 months, 95% CI 10.9–31.5 months) compared to those with detectable CTCs and KRAS wt tumors (25.8 months, 95% CI 19.1–32.6 months, \(p = 0.023 \)). In addition, patients with undetectable CTCs and KRAS mutant tumors had a lower median OS (22.4 months, 95% CI 18.9–26.0 months, \(p = 0.028 \)) compared to those with undetectable CTCs and KRAS wt tumors (28.1 months, 95% CI 23.0–33.2 months, \(p = 0.028 \)) (Table 3; Suppl. Fig. 1b).

Similarly, patients with \(\text{BRAF}^{\text{V600E}} \) wt tumors and undetectable \(\text{CEACAM5mRNA} \) mRNA-positive CTCs presented significantly higher PFS (9.0 months, 95% CI 8.3–9.7 months) compared to those with detectable \(\text{CEACAM5mRNA} \) mRNA-positive CTCs and \(\text{BRAF}^{\text{V600E}} \) mutant tumors (2.5 months, 95% CI 0.1–10.6 months, \(p = 0.022 \); Table 3, Suppl. Fig. 1c).

Finally, patients with \(\text{BRAF}^{\text{V600E}} \) wt tumors and undetectable \(\text{CEACAM5mRNA} \) mRNA-positive CTCs had significantly higher OS (24.5 months, 95% CI 20.5–28.5 months) compared to those with undetectable CTCs and \(\text{BRAF}^{\text{V600E}} \) mutant tumors (11.1 months, 95% CI 5.8–16.4 months, \(p = 0.036 \); Table 3, Suppl. Fig. 1d).

Univariate and multivariate analyses

Univariate analysis revealed that PFS was significantly lower in patients with high-grade tumors (HR 1.4, 95% CI 1.2–1.8; \(p < 0.001 \)), PS (ECOG) \(\geq 2 \) (HR 3.4, 95% CI 2.3–4.8; \(p < 0.001 \)), in patients who did not undergo metastasectomy (HR 2.2, 95% CI 1.7–2.9; \(p < 0.001 \)) and high positivity levels of \(\text{CEACAM5mRNA} \) at baseline (HR 1.7, 95% CI 1.1–2.5; \(p = 0.018 \)) (Table 2). Conversely, there was no significant association between PFS and age, gender, tumor location, \(\text{BRAF}^{\text{V600E}} \) or \(\text{KRAS} \) mutations. Moreover, univariate analysis revealed that the detection of \(\text{CEACAM5mRNA} \) mRNA-positive CTCs at baseline was associated with significantly lower median OS (HR 2.3, 95% CI 1.5–3.6; \(p < 0.001 \)) (Table 2), independently of the administered chemotherapy regimen. In addition, high-grade tumors and PS (ECOG) \(\geq 2 \) were associated with an increased incidence of death (HR 1.4, 95% CI 1.2–1.8; \(p < 0.001 \) and HR 4.0, 95% CI 2.8–5.6; \(p < 0.001 \), respectively). An increased risk of death was also revealed for patients who did not undergo metastasectomy (HR 2.9, 95% CI 2.2–3.9; \(p < 0.001 \); Table 2). There was no significant association between the median OS and the gender, the age, the tumor location, or the mutation status of \(\text{BRAF}^{\text{V600E}} \) and \(\text{KRAS} \).

Multivariate analysis confirmed these results and revealed that the detection of \(\text{CEACAM5mRNA} \) mRNA-positive CTCs at baseline, the tumor’s high grade, the PS (ECOG) \(\geq 2 \) and the inability to perform a metastasectomy with curative intent were strongly associated with decreased patients’ PFS and OS (Table 2).

Discussion

There are few validated prognostic factors in mCRC including clinico-pathological parameters such as the stage of the disease, the performance status, the Kohne prognostic index, and the tumor differentiation [36]. More recently, the \(\text{BRAF}^{\text{V600E}} \) mutation status was added as an adverse prognostic and predictive biomarker for these patients [37, 38]. Our group has been previously described a reliable and reproducible assay for the detection of \(\text{CEACAM5mRNA} \) mRNA-positive CTCs in patients with operable CRC; using this assay, it was shown that the detection of \(\text{CEACAM5mRNA} \) mRNA-positive CTCs in the blood of patients is an independent prognostic factor for reduced DFS and OS [21]. In the study by Vardakis et al. [21] was included, for validation purposes, a group of patients with mCRC; the detection rate of \(\text{CEACAM5mRNA} \) mRNA-positive CTCs in these patients was 44%. Based on this initial observation, it was decided to extend this patients’ cohort to better investigate the clinical
relevance of CEACAM5mRNA-positive CTCs in chemotherapy-naïve mCRC patients.

The presented data revealed, practically, three groups of patients according to the CEACAM5mRNA positivity and the detection of high CEACAM5mRNA positivity before the initiation of any systemic treatment emerged as an independent factor associated with decreased PFS and OS (Fig. 1a, b). When analyzed in conjunction with other clinico-pathological features, the detection of high CEACAM5mRNA-positive status may provide additional information. The two other groups (intermediate and low CEACAM5mRNA positivity) were not associated with patients’ clinical outcome. Similarly, the detection of CEACAM5mRNA-positive CTCs did not demonstrate any significant association with PFS and OS in the group of patients who underwent a metastasectomy, irrespectively of the degree of positivity. However, concerning patients with isolated colorectal liver metastases undergoing liver metastasectomy, little is known about the possible prognostic value for CTCs [39, 40]. Only recently Seeberg et al. published an article where the CellSearch platform was used for the detection of CTCs in 7.5 ml blood in patients with isolated colorectal liver metastases [41]. They reported that CTCs can predict non-resectability and impaired survival. CTC positivity was significantly higher in nonresectable (46%) than in resectable patients (11.7%), \(p < 0.01 \) [41]. However, the authors have also included patients who were not eligible for resection and it is not clear whether the patients who underwent liver surgery had extrahepatic disease [41]. On the contrary, in our study we demonstrated, for the first time, a significant association between the detection of CEACAM5mRNA-positive cells and the clinical outcome in patients with KRAS or BRAF\(^{V600E}\) mutated tumors. More importantly, patients with detectable CEACAM5mRNA-positive cells and KRAS mutant tumors presented significantly shorter PFS and OS compared to the other patients’ groups (Table 3, Supplementary Table 2).
BRAF V600E compared with those with undetectable and V600E undetectable CTCs presented significantly higher median chemotherapy regimens which are frequently used for the treatment of the primary tumor or the efficacy of the different metastatic disease at the time of diagnosis [34, 42–44]. These results are in concordance with previous studies using either molecular- or cytology-based techniques for the detection of CTCs [21, 45]. Indeed, using the CellSearch platform, the CTC detection rate in patients with CRC was 36.2% and the quantification of CTCs could be a valuable prognostic factor [45]. In a prospective multicenter study, it has been demonstrated that the number of CTCs before and during treatment is an independent predictor for both PFS and OS in patients with mCRC whereas the presence of liver metastases was associated with the detection of CTCs [46]. However, it should be noted that CEACAM5, which is used as a marker for the detection of CTCs in the current study, represents a marker of epithelial cells. Cancer cell heterogeneity has been widely described and includes a wide range of differentiation states from epithelial-to-mesenchymal types, a process known as epithelial–mesenchymal transition (EMT) [47–49]. Whether CEACAM5 is similarly modulated during EMT is still unknown. On the other hand, it has been proposed that the combination of epithelial and mesenchymal markers may capture CTCs undergoing EMT resulting, thus, in an increase of the sensitivity of the assays used for the detection of CTCs [50]. However, both the CellSearch assay and the molecular assay, which was used for the detection of CTCs in the current study, are based on epithelial markers, such as EpCAM and cytokeratins or CEACAM-5mRNA expression, respectively. Despite the observed positive correlations between the detection of CTCs with any of these assays and the patients’ clinical outcome, it is unclear whether these assays recognize the same subpopulation of CTCs. Therefore, only the direct comparison of these assays has the possibility to demonstrate which of them is the most appropriate for clinical use and decision-making. This comparison should not evaluate only their clinical relevance as a tumor biomarker but also their capacity to capture the vast majority of CTCs undergoing EMT, as well as their reproducibility, cost and subjectivity of the interpretation of images [51, 52].

Beyond its prognostic significance, the detection of CTCs may be used as surrogate marker for patients’ outcome under specific treatments as already has been reported [27]. According to its design, the current study could not provide information concerning the predictive value of CEACAM5mRNA-positive CTCs according to the location of the primary tumor or the efficacy of the different chemotherapy regimens which are frequently used for the treatment of mCRC; a subsequent prospective study, focused on the tumor location and the specific molecular tumors’ characteristics is required to more appropriately define the clinical relevance of CEACAM5mRNA-positive CTCs during treatment of patients with mCRC. In addition, the clinical relevance of CEACAM5mRNA-positive CTCs in homogeneously treated patients should be investigated in future studies, to clearly define whether they may be used as a surrogate marker for the efficacy of systemic treatment in patients with mCRC. Furthermore, the isolation and genetic–molecular characterization of CTCs may allow the non-invasive genotyping of CTCs and, thus, the continuous monitoring of the disease tailoring the therapeutic decisions. Indeed, it has been reported that using modern technologies it is possible to monitor the molecular/mutational profile in CTCs and in some cases this profile may be different from that of the primary tumor [20, 53–55] and the corresponding metastases [55]. In another study, our group investigated the detection of KRAS mutations in CTCs from patients with mCRC and compared their mutation status during treatment or disease progression with that of the corresponding primary tumors. It was revealed that although 29.2% of the patients had KRAS mutant primary tumors, KRAS mutations were revealed in 45% of them and in 16.7% of those with wild-type tumors [54]. In a more recent study, we investigated the KRAS exon 2 mutations in serial CTCs samples of patients with RAS wild-type mCRC captured by the isolation by size of epithelial tumor cells (ISET) system in an effort to evaluate the evolving genetic heterogeneity of these cells in patients receiving front line treatment [20]. The results demonstrated that KRAS exon 2 mutations could be detected in CTCs from patients with RAS wt primary tumors, either before the initiation of systemic treatment or during treatment and at the time of disease progression. An interesting observation was the fact that in three patients who received anti-EGFR-based chemotherapy, KRAS mutations were first detected only at the time of disease progression suggesting the presence of a resistance mechanism against anti-EGFR treatment. Moreover, despite the presence of KRAS mutations in serial samples of two patients, each sample presented a different mutation, possibly indicating the heterogeneity of the CTC population [20]. Therefore, it is reasonable to hypothesize that the discordance of the mutational status of KRAS gene between the primary tumor and the CTCs may reflect the heterogeneity of the tumor clones which may have potential predictive and/or prognostic relevance and could be emerged as a dynamic molecular marker representing more appropriately the real-time tumor heterogeneity and evolution of mCRC.

Acknowledgements This work was partly supported by the Cretan Association for Biomedical Research (CABR), the Hellenic Society of Medical Oncology (HeSMO) and the SYNERGASIA 2009
PROGRAMME (co-funded by the European Regional Development Fund and the General Secretariat of Research and Technology in Greece), Project code: Onco-Seed diagnostics.

Compliance with ethical standards

Conflict of interest No potential conflicts of interest were disclosed.

References