Usefulness of Immunocytochemistry for the Detection of the BRAFV600E Mutation in Circulating Tumor Cells from Metastatic Melanoma Patients

Journal of Investigative Dermatology advance online publication, 10 January 2013; doi:10.1038/jid.2012.485

TO THE EDITOR

Metastatic melanoma patients harboring a BRAF gene mutation on codon 600 can be treated with targeted therapies (Flaherty, 2012). Depending on the content of tumor cells and on the analytical sensitivity, BRAF mutations are found in 50–70% of metastatic melanoma patients (Davies et al., 2002). Around 80% display a valine-to-glutamic acid substitution (V600E) and ~16% harbor a valine-lysine substitution (V600K) causing constitutive kinase activation (Wan et al., 2010). Around 80% display a valine-glutamic acid substitution (V600E) in metastatic melanoma patients. BRAFV600E mutation analysis is currently performed in daily clinical practice on tissue samples using various molecular biology technologies. Moreover, the detection of the BRAFV600E mutation in blood samples from melanoma patients in the context of translational research and clinical trials has been described (Board et al., 2009; Sakaiizawa et al., 2012). Metastatic dissemination correlates with the presence of circulating tumor cells (CTCs) detected in blood samples (Paterlini-Brechot et al., 2011; Alix-Panabieres et al., 2012). The detection of circulating melanoma tumor cells (CMCs) can be performed using different technologies, in particular by the isolation by size of epithelial tumor cells (ISET) method, a direct method that allows cytopathological analysis of CMCs (De Giorgi et al., 2010). Moreover, ancillary methods for CTC characterization can be performed on cells isolated by ISET (De Giorgi et al., 2010; Ilie et al., 2012). Recent studies highlighted the value of immunohistochemistry (IHC) using the VE1 antibody for the detection of the BRAFV600E mutation in melanoma (Capper et al., 2012). The aim of this work was to combine ISET and immunocytochemistry (ICC) using the VE1 antibody to investigate the presence of BRAFV600E in CMCs from metastatic melanoma patients.

Therefore, 98 metastatic melanoma patients were screened for BRAFV600E both by pyrosequencing and by IHC anti-VE1. Concomitantly and blindly, ICC for the BRAF mutation was performed on CMCs isolated by ISET (Supplementary Data). Population data are shown in Supplementary Table S1.

Of 98 patients, 53 (54%) had a BRAFV600E mutation detected by pyrosequencing in tissue samples. Among these patients, 51/53 (96%) showed strong immunostaining with the VE1 antibody in tissue sections (Supplementary Table S2). Homogenous intracytoplasmic staining without associated nuclear staining was demonstrated in melanoma cells only (Figure 1). Among the tumors negative for the BRAF mutation by pyrosequencing, none had positive VE1 immunostaining (Supplementary Table S2; Figure 1). An excellent concordance was found between these two methods (Supplementary Table S2). The IHC anti-VE1 demonstrated 96% sensitivity and 100% specificity when compared with the sequencing results. CMCs were isolated in 87/98 (89%) patients. Of 87 patients, 54 (62%) demonstrated positive immunostaining on ISET filters as detected by VE1 ICC (Table 1; Figure 1). Forty-six out of fifty-four (85%) patients with CMCs positively stained by ICC had a BRAFV600E mutation detected in tissue specimen by pyrosequencing (Table 1; Figure 1). Eight out of fifty-four (15%) patients with positive VE1-immunostained CMCs lacked BRAFV600E in tumor tissues, analyzed both by pyrosequencing and IHC (Table 1; Figure 1). The ICC VE1 CMC-based assay

Table 1. Correlation between the mutational status of the BRAF gene detected by pyrosequencing on tumor specimens and BRAFV600E expression detected by ICC with the VE1 antibody on circulating melanoma cells isolated by ISET from 87 metastatic melanoma patients

<table>
<thead>
<tr>
<th>Pyrosequencing (n)</th>
<th>ICC anti-VE1, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>V600E (46)</td>
<td>46 (85%)</td>
</tr>
<tr>
<td>V600K (5)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Wild-type (36)</td>
<td>8 (15%)</td>
</tr>
<tr>
<td>Overall</td>
<td>54 (62%)</td>
</tr>
</tbody>
</table>

Abbreviations: CMCs, circulating melanoma tumor cells; CTCs, circulating tumor cells; ICC, immunocytochemistry; IHC, immunohistochemistry; ISET, isolation by size of epithelial tumor cells

\(^1\)A \(\chi^2\) test was used. P-value significant at the 0.05 level.
revealed 100% sensitivity and 81% specificity when compared with the pyrosequencing results on the corresponding tumor specimens. Among the 87 patients with CMCs isolated by ISET, 5 had \(\text{BRAF}^{V600K} \) mutation in melanoma tissue, without positive staining with the VE1 antibody, both in tissue sections and in CMCs (Figure 1). Control immunostaining on CMCs using anti-CD45 was negative (not shown).

This study shows that CMCs isolated by ISET can be used to detect the \(\text{BRAF}^{V600E} \) mutation in patients with advanced melanoma by using the VE1 antibody. We demonstrated that this noninvasive approach is highly sensitive and relatively specific for the detection of \(\text{BRAF}^{V600E} \) in CMCs, having high level of concordance with results in tissue samples. In comparison with

Figure 1. Immunohistochemical features of \(\text{BRAF}^{V600E} \) or \(\text{BRAF}^{V600K} \)-mutated tumors and \(\text{BRAF} \) wild-type tumors. (Case no. 1) \(\text{BRAF}^{V600E} \)-mutated metastatic melanoma demonstrating positive immunostaining with the VE1 antibody on both (a) a tumor specimen and (b) circulating melanoma cells detected by isolation by size of epithelial tumor cells (ISET). (Case no. 2) \(\text{BRAF} \) wild-type metastatic melanoma showing no staining with the VE1 antibody on both a tumor specimen (c) and (d) circulating melanoma cells. (Case no. 3) \(\text{BRAF}^{V600E} \)-mutated metastatic melanoma displaying negative immunostaining with the VE1 clone on the tumor tissue (e) and (f) intense positive cytoplasmic staining on the circulating melanoma cells detected by ISET. (Case no. 4) \(\text{BRAF}^{V600K} \)-mutated metastatic melanoma demonstrating negative immunostaining with the VE1 antibody on both a tumor specimen (g) and (h) circulating melanoma cells isolated by ISET. Right figures, immunoperoxidase, original magnification \(\times 200 \); left figures, immunoperoxidase, original magnification \(\times 1,000 \); scale bar = 16 \(\mu \)m.

V Hofman et al.
\(\text{BRAF}^{V600E} \) Mutation and Circulating Melanoma Tumor Cells

Journal of Investigative Dermatology
other approaches used for the detection of BRAFV600E from blood samples, ISET allows cytopathological detection of CMCs before the analysis for a mutation, affording correlation of cytomorphological and ICC data and avoiding interpretation bias (Paterlini-Brechot et al., 2007). Moreover, ISET is a rapid and low-cost method that can easily be repeated, thereby allowing the monitoring of CMC detection in patients on targeted therapy. The use of ICC for the detection of the BRAFV600E mutation on CMCs has advantages, but also a few potential drawbacks. Interestingly, eight patients included in the present series showed CMCs positively stained by ICC using the VE1 antibody, whereas BRAFV600E was not found in the corresponding tumor tissue samples. As molecular heterogeneity is a common event in tumors, it is possible that the tissue sample used for both pyrosequencing and IHC analysis may not harbor the BRAFV600E mutation (Longo, 2012). In these cases, BRAFV600E-mutated CMCs derived from other parts of the tumor would have invaded the blood stream, initiating metastatic dissemination. Second, even if pyrosequencing is a sensitive technology (~5%), the presence of a small amount of mutated cells in the tissue sample may give a false negative result (Gonzalez de Castro et al., 2012). It has been described previously that VE1 immunostaining may be useful for the detection of smaller amounts of BRAFV600E-mutated cells in tissue sections (Capper et al., 2012). The hypothesis of a false positive ICC result on CMCs can be reasonably eliminated, as negative controls made in parallel on CMCs isolated by ISET did not show any staining. Future developments on the investigation of the BRAFV600E mutation in CMCs isolated by ISET, both by ICC and DNA sequencing, should add more information to this issue. For now, the low number of detected CMCs (from two to eight CMCs) in these eight patients did not allow us to obtain conclusive results by pyrosequencing performed on extracted DNA from CMCs. Larger studies are now needed to determine whether the detection of BRAFV600E in CMCs using VE1 immunostaining could allow the selection of patients for a targeted therapy, despite the absence of detection in tissue sample. In conclusion, CMCs can be detected by ISET in patients with advanced melanoma, and can be analyzed by using ICC with the VE1 antibody for the identification of the BRAFV600E mutation in melanoma cells. This approach is noninvasive, rapid, very sensitive, and specific, and opens new options for taking care of metastatic melanoma patients in the era of innovative targeted treatments.

All patients enrolled in the study provided written, informed consent. The study was approved by the Ethics Committee of the Nice University Hospital Centre and was performed in adherence to the Helsinki Guidelines.

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
MI was supported by the Fondation Lefort-Beaumont de l’Institut de France through collaboration with INSERM Unit 807, Université Paris Descartes.

Véronique Hofman1,2,3,7, Marius Ilie1,2,3,7, Elodie Long-Mira1,3, Damien Giaccherino4, Catherine Butori1, Bérengère Dadone1, Éric Selva2, Virginie Tangha2, Thierry Passeron4, Gilles Poissonnet5, Jean-François Emile6, Jean-Philippe Lacour4, Philippe Bahadoran4 and Paul Hofman1,2,3

1Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France; 2Human Biobank, Pasteur Hospital, Nice, France; 3Team 3 (Carcinogenesis-related chronic active inflammation) IRCCAN, INSERM U1081—CNRS UMR 7284, Faculty of Medicine of Nice, University of Nice Sophia Antipolis, Nice, France; 4Department of Dermatology, Archet Hospital, Nice, France; 5Department of Surgery, Antoine Lacassagne Centre, Nice, France; and 7Department of Pathology, Amiens Paré Hospital, Paris, France
E-mail: hofman.p@chu-nice.fr
7These authors contributed equally to this work.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at http://www.nature.com/jid

REFERENCES
Capper D, Berghoff AS, Magele M et al. (2012) Immunohistochemical testing of BRAF V600E status in 1,120 tumor samples of patients with brain metastases. Acta Neuro pathol 123:223–33

www.jidonline.org 3